

# Volume Allocation Model for DMPA Procurement

A Study of Competition & Risk

Felix Lauton, Alexander Rothkopf, Richard Pibernik Chair for Logistics and Quantitative Methods

Oslo, October 5, 2015



# Acknowledgements

- This research was partially funded by the William Davidson Institute (WDI) at the University of Michigan.
- Prashant Yadav (WDI) & Leslie Arney (WDI) have provided continuous support and context for this study.
- This study gained from feedback by individuals from the following institutions (alphabetical order): i+ solutions, John Snow Inc., Reproductive Health Supplies Coalition, United Nations Population Fund, United States Agency for International Development



### Motivation

#### **Problem Set-Up & Research Question**

- USAID & UNFPA fund and procure DMPA for eligible countries
- Today: only one supplier (Pfizer) can provide a WHO-PQ product
- Future: New generic supplier(s) will enter the market
- How should USAID & UNFPA split the procurement volume between incumbent and entrant?

#### **Major Drivers**

- · Purchasing costs
- Uncertain lead times of both suppliers
- Default risks of both suppliers





We conduct an extensive simulation study to guide decision makers on how to best split procurement volumes





### Some questions we intend to answer....

- What are the expected benefits of the new supplier if UNFPA re-allocates X% and USAID Y% from incumbent to new supplier?
- What drives this benefit most (cost, capacity of entrant, etc.)?
- What is the downside (expected shortages) if UNFPA and USAID re-allocate volume from incumbent to entrant?
- How "bad" can the entrant perform (in terms of long lead times) until UNFPA and USAID experience substantial disruptions?
- How are benefits and disadvantages impacted by in-country registration?
- How do changes in UNFPA's and USAID's procurement budgets for DMPA drive the results?
- What is the value of coordination between UNFPA and USAID?



### Simulation model

#### **General:**

- Budget
- Target program vol.
- Production capa.

#### **Competition:**

- Current prices
- Supplier prod. cost
- Min. entrant discount/max. incumbent premium

#### **Lead Time:**

- Contracted lead times
- Lead time distribution
- Country registration (entrant)

#### **Default:**

- Entrant default probability
- Compensation capa.



- RH Interchange
- Procurement Data 2012/13
- 250 Data Entries



### Outcome measure: expected unmet need

(See appendix for formal definition)

We capture the (positive and negative) effects of different volume splits by one outcome measure:





Price-induced Shortage

+ Risk-induced Shortage

= Expected Unmet Need (EUN)

- Determine the volume split that minimizes EUN!
- Consider constraints such as production capacity of entrant and incumbent and the purchasing budgets of buying organizations.



### Reference case



2 1st Stage Sensitivity Analysis



4 2nd Stage Sensitivity Analysis

#### **Reference Case – Parameters**

Target Program Volume and Budget:

- USAID 58 Mil/year; Budget \$ 38.4 Mil/year
- UNFPA 48 Mil/year; Budget \$ 32 Mil/year
- Last year price \$0.8/unit

**Production Capacity and Compensation Capacity:** 

- Incumbent: 95,000,000; 5,000,000 units/year
- Entrant: 15,000,000; 0 units/year

Lead Time (LT):

- Contracted LT USAID: 51 days
- Contracted LT UNFPA: 69 days
- LT Buffer USAID: 1 SD (+34 days)
- LT Buffer UNFPA: 1 SD (+46 days)

**Default Probabilites:** 

- Incumbent 3%/year
- Entrant 3%/year

Registration

Entrant Product Registration: all countries



### Optimal sourcing decision in the reference case

#### **Question**: Which entrant share minimizes expected unmet need?

#### Preliminary analysis: optimal decision

#### Reference case:

- The sum of <u>risk-</u> and <u>price-induced shortages</u> yield <u>expected unmet need</u>.
- As both are decreasing in entrant share, expected unmet need is also decreasing.
- Optimal volume split for both USAID and UNFPA is: 15% entrant; 85% incumbent.





### Average lead times influence risk ...

#### **Average Lead Time**

The difference between incumbent's and entrant's average lead time drives optimal splits.

#### Result:

- The entrant supplier reduces risk:
   Assuming the same average lead times (LTs) and lead time distributions both buyers can utilize a diversification effect which is highest at equal splits.
- A higher average entrant lead time
  - increases risk-induced shortage,
  - <u>reduces benefits</u> of <u>diversification</u> and shifts maximum diversification to lower entrant shares,
- Note that average LT proxies the negotiated lead time. Lower average entrant LT reduces risk exposure.





# Scenario I: Splitting decisions under risk (1)

4

2

#### Scenario I: High Risk

#### Reference case

- shows that a buyer can participate in diversification effects from contracting two suppliers.
- Diversification and competition can both work in favor of a new entrant.

#### Results:

- But: benefits of diversification
  - · depend on the split,
  - are limited by budget and capacity constraints,
  - depend on <u>differences</u> in average lead times, lead time variability, and default probability.
- Increasing differences reduce diversification
   effects (and diversification may disappear for very
   high differences).
- Another risk related driver is country registration.



Entrant Share of TPV

Expected Unmet Need - - - Risk-Induced Shortage

Price-Induced Shortage



## Scenario IV: Country registration

#### **Scenario IV: Country Registration**

#### Results:

- The number of countries in which the entrant is registered limits the effects of risk diversification.
- If the entrant registers its product in more countries, diversification effects increase.
- Risk-induced shortage decreases and converges to the "all countries registered" scenario for more countries registered.
- More registered countries could also increase competition if the entrant has higher capacity because otherwise the maximum volume the entrant can supply is limited. (Not shown on slide)

#### Current registrations & countries with demand >80%:

| Afghanistan  | Indonesia         | Pakistan        |
|--------------|-------------------|-----------------|
| Burkina Faso | <u>Kenya</u>      | Philippines     |
| Bangladesh   | <u>Madagascar</u> | <u>Senegal</u>  |
| Cameroon     | <u>Malawi</u>     | <u>Tanzania</u> |
| DR Congo     | Mali              | <u>Uganda</u>   |
| Ethiopia     | Mozambique        | Yemen           |
| <u>Ghana</u> | Myanmar           | <u>Zambia</u>   |
| Guatemala    | <u>Nepal</u>      | <b>Zimbabwe</b> |
| Haiti        | <u>Nigeria</u>    |                 |





### Scenario V: Buffer stock

#### Scenario V: Buffer Stock

#### Results:

- Operating a <u>buffer stock</u> can <u>lower risk-induced</u> <u>shortage</u>.
- Example: USAID employing a buffer stock with lower mean lead time (10 days) results in approx. 5.5 mil. units less risk effect.

#### Back-of-the-envelope calculation:

- Suppose USAID chooses to split 20%/80% (entrant/incumbent) resulting in a weighted average price of \$0.73 per unit. Hence the 5.5 mil. units less shortage amount to approx. \$4 mil.
- USAID prefers to operate the buffer stock (instead of buying additional units) and reduces risk if operational costs were below \$4 mil.\*



<sup>\*</sup> This calculation disregards the fact that if USAID buys additional units these units are at risk of becoming shortage.



# Scenario VII: Decreasing procurement budget

#### **Scenario VII: Decreasing Procurement Budgets**

#### Results:

- Decreasing budgets of one organizations result in increasing price-induced shortage.
- The optimal decision depends on the <u>difference</u> between budgets. Decreasing the budget of one organization <u>shifts</u> the optimal <u>coordinated</u> <u>decision</u> towards the other organization.
- If the other organization decides to increase budgets in response, coordination becomes even more important.





# Scenario VIII: Quality testing

#### **Scenario VIII: Quality Testing**

#### Results:

- Costly quality testing can change the optimal coordinated decision.
- Example: Suppose USAID has to perform quality tests on the entrants product at a fixed per unit cost.
- At testing costs of \$0.05 per unit, the optimal allocation changes:
  - if costs are below \$0.05 per unit, it remains optimal for USAID to be procure all units from the entrant.
  - if costs are above \$0.05 per unit, UNFPA should procure all units from the entrant.



Risk-Induced Shortage (Unit Change)



### Back to our questions....

- What are the expected benefits of the new supplier if UNFPA re-allocates X% and USAID Y% from incumbent to new supplier?
- What drives this benefit most (cost, capacity of entrant, etc.)?
- What is the downside (expected shortages) if UNFPA and USAID re-allocate volume from incumbent to entrant?
- How "bad" can the entrant perform (in terms of long lead times) until UNFPA and USAID experience substantial disruptions?
- How are benefits and disadvantages impacted by in-country registration?
- How do changes in UNFPA's and USAID's procurement budgets for DMPA drive the results?
- What is the value of coordination between UNFPA and USAID?



### Thank you very much!

### Dr. Alexander Rothkopf

Chair of Logistics and Quantitative Methods University of Wuerzburg alexander.rothkopf@uni-wuerzburg.de